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Surface-wave generation : a viscoelastic model 
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The Reynolds-averaged equations for turbulent flow over a deep-water sinusoidal 
gravity wave, z = acoskx = h,(x), are formulated in the wave-following coordinates 
[, 9 ,  where .Y = 6, z = q +A([ ,  q), h(6,O) = ha([)  and h is exponentially small for ky 9 1, 
and closed by a viscoelastic constitutive equation (a mixing-length model with 
relaxation). This closure is derived from Townsend’s boundary-layer-evolution 
equation on the assumptions that: the basic velocity profile is logarithmic in 7 + z,, 
where z,  is a roughness length determined by Charnock’s similarity relation; the lateral 
transport of turbulent energy in the perturbed flow is negligible; the dissipation length 
is proportional to y+zo. A counterpart of the Orr-Sommerfeld equation for the 
complex amplitude of the perturbation stream function is derived and used to 
construct a quadratic functional for the energy transfer to the wave. A corresponding 
Galerkin approximation that is based on independent variational approximations for 
outer (quasi-laminar) and inner (shear-stress) domains yields an energy-transfer 
parameter /l that is comparable in magnitude with that of the quasi-laminar model 
(Miles 1957) and those calculated by Townsend (1972) and Gent & Taylor (1976) 
through numerical integration of the Reynolds-averaged equations. The calculated 
limiting values of /l for very slow waves, with Charnock’s relation replaced by 
kz, = constant, are close to those inferred from observation but about three times the 
limiting values obtained through extrapolation of Townsend’s results. 

1. Introduction 
I consider here the role of wave-induced Reynolds stresses in the transfer of energy 

from a turbulent shear flow to gravity waves on deep water, building on the earlier 
investigations of Miles (1957, hereinafter referred to as M57; and 1967), Davis (19721, 
Townsend (1972), Belcher & Hunt (1993), and Miles (1993, hereinafter referred to as 
M93).t In M57, I constructed a quasi-laminar model in which turbulence is implicitly 
included through the prescribed velocity profile but the wave-induced Reynolds 
stresses are neglected. In M93, following Knight (1977), Jacobs (1987) and van Duin 
& Janssen (1992), I included these Reynolds stresses through an eddy-viscosity closure 
and the ancillary hypothesis that the eddy viscosity is conserved along streamlines. But 
Townsend (1972), Zeman & Jensen (1987, who also cite Taylor 1980) and Belcher & 
Hunt (1993) argue, and I agree, that, although an eddy-viscosity model may be 
appropriate for kz 4 1 (k  = wavenumber and z = elevation), a rapid-distortion model 
is more appropriate for kz = O(1); indeed, the quasi-laminar model may be regarded 
as a limiting case of a rapid-distortion model (see comments following (1.13)). 

t See Komen et al. (1994) for an extensive survey of theoretical, empirical and observational 
aspects of the wave-generation problem. 
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Each of the papers cited above and the present investigation consider an 
incompressible, inviscid, turbulent boundary-layer flow over a gravity wave of the form 

(1.1) 2 = u cos k.r E h,(x), 

where .Y and z are Cartesian coordinates in a reference frame moving in the x-direction 
with the wave speed c = (g /k) ' I2 .  The basic velocity in this reference frame is 

"2 = U(z)  - c, (i.2uj 

where U(z)  typically is approximated by 

U ( z )  = U ,  In [ (z+z,) /zo] ,  U ,  = U*/K (1.2b, c)  

(but U and O 2  ultimately are posed as functions of the wave-following coordinate q), 
V* is the kinematic shear stress, K z 0.4 is von Karman's constant, and z! is the 
roughness length. Note that, although (1.2b) implies U(z )  4 U,  z / z ,  as z /zo  4 0, it is not 
intended to provide an adequate description of a laminar sublayer. 

It is conventional (Komen et al. 1994, 11. 2.3) to determine zo from Charnock's 
(1955) similarity relation, gz, /  rrf = constant, but Townsend (1972), Gent & Taylor 
(1976), and Belcher & Hunt (1993) assume kz, = gz,/c2 = constant. On dimensional 
grounds alone, gzo/ q = constant and gz,/c2 = constant are equally plausible, each 
being a special case of g z , / q  =f(c /U , ) ;  however, g z , / q  z constant is supported by 
dynamical considerations for aerodynamically rough flow over wind-generated gravity 
waves (Phillips 1977, 54.10). 

In the quasi-laminar model of M57, the energy transfer to the surface wave is 
associated with a singularity at the critical layer (z = zc, where 42 = 0) and is described 
hv 
-J 

CT E (kcE)-' (c?E/at) = s/3( UJc)', /? = - n(U"/kU'),(?/rrfG) = PC, 
(1.3~1, b) 

where E is the wave energy, the overbar signifies an average over x, s = p,/p,, is the 
air-water density ratio, U,  is the reference velocity (1.2~): = d/dz, u' is the wave- 
__ induced vertical velocity, and the subscript c implies z = zc (h i  in M93 (1.4b) should be 
hiz). A necessary condition for this critical-layer mechanism to be significant is kzc 6 1. 

The incorporation of the wave-induced Reynolds stresses through an eddy-viscosity 
model and the neglect of the diffusion of the perturbation vorticity o yields (M93) 

V *  ("2' V{) + ~ K U ,  U' as 5 = 0 (' E d/dz) (1.4) 

for the determination of the streamline displacement 5. This leads to P = PC+Pv in 
(1.3 a), where PC is given by (1.3 b), 

P, = ~ K ~ % ~ / U , ,  02, = @(z0), kzo = fe-7 = 0.281 (y  = 0.577.--), (1.5~-c) 

and z ,  (E z1 in M93) is an outer length scale. The result (1.5~) is due essentially to 
Knight (1977), but he assumes 2, = l/k, as also do Jacobs (1987) and van Duin & 
Janssen (1 992). 

The analyses in these last three papers and M93 are asymptotic for c J 0, where 

1 /e = "a,/ U ,  = In [ zo / (zc  + zo)] =Lo.  (1.6) 

Setting U = c in (1.2b) to determine zc and invoking Charnock's relation (see above) 
to obtain 

we find that e has the minimum value l/[ln(2/C)-2-y]. This minimum coincides 
with that of 4, occurs at 2 = 2, and is 0.20/0.37 for C = 10-3/10-2 (the typical range 

k = k(z, + 2") = C P e P ,  C E gzo/  q, c^ = c/ U,, (1.7~-C) 
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of C). Its existence implies that the limit E & 0 with C fixed is inaccessible. If (1.7b) is 
replaced by kz, = constant, E decreases monotonically with c^ to - l / (y+ln 2kz,) for 
c ^ =  0. 

Belcher & Hunt (1993) assume c^ 4 1, neglect the wave-induced Reynolds stresses in 
an outer domain in which the length scale is h,  (cf. zo), posit a mixing-length model 
in an inner domain in which the length scale is I (their model implies a discontinuity 
in the wave-induced Reynolds stresses between the outer and inner domains), and 
obtain 

V = 42(hm)/d3(l), d = UJ@(I),  (1.8~-c) 
where 

(kz,  4 k l 4  1). (1.9a, b) 

Their analysis is asymptotic for A 4 0, but they find that the numerical values of A in 
the physical domain of interest are as large as +; they also determine the O(A) 
component of (1.8a). The approximation ( 1 . 5 ~ )  is formally an order of magnitude 
larger than ( 1.8 a)  in the limit A 1 0, but (1.8 a )  may be numerically larger than (1.5 a)  
in their range of A .  

In the following development, I allow for a continuous transition from the quasi- 
laminar model in an outer domain to an eddy-viscosity model near the interface by 
adopting a viscoelastic closure (cf. Crow 1968; Davis 1972; Townsend 1972; Manton 
1972; Abrams & Hanratty 1985). I proceed as follows. In $2, I develop the Reynolds- 
averaged Euler equations that govern two-dimensional wave motion on the 
assumptions that as(u‘’- w ’ ~ )  and a,(u‘w‘) are dominated by a,(u‘w‘), where u’ and 
w’ are the x- and z-components of the velocity fluctuation and ( ) implies a y-average. 
I then assume steady flow in the reference frame of the sinusoidal wave (l.l), invoke 
ka 4 1, introduce the wave-following coordinates and y through the transformation 

x = 6, z = y + h ( t , y ) ,  (1.10a, b) 

where h = h((, q)  maps z = h, on q = 0 and is evanescent for ky 1‘ 00 but is otherwise 
arbitrary, and posit the solution in 6, q as a small perturbation with respect to the basic 

,8 = 2 ~ ’  [2 V4 + y2 - 1 + @ A ) ] ,  

(kh,)2 In (h, /z , )  = 1, kl In (l /z ,)  = 2 2  

flow U(?/). 
In $3, I invoke the viscoelastic closure (Miles 1996) 

T(D7IDt) + T - 70 = ljl(( uZ) - U’ ), U’ = U’(?/), ( l . l l a ,  b) 

where 7 is the mean shear stress, T is a relaxation time, 70 = U* is the mean shear stress 
in the basic flow, v1 is an eddy viscosity for the wave-induced flow, and (u,) is the mean 
shear-strain rate. Similarity considerations suggest T cc 1 / U‘ and v1 cc uo 3 T ~ /  U’, and 
I infer T = ~/K’U’ and v1 = 2v, from Townsend’s (1976, 57.13) phenomenological 
equation for the transport of turbulent energy in a boundary layer. The introduction 
of the complex carrier exp (ikt), for which D/Dt + ik J3( q) ,  then yields the complex 
viscosity 

(1.12) 

for the ratio of the complex amplitudes of 7 - 7 ,  and (u,) - U’(q). This leads to the 
reduction of the Reynolds-averaged equations to the Orr-Sommerfeld-like equation 

(1.13) 

where #(y) and @(q) are the complex amplitudes of h and 4, a perturbation stream 
function. The effective, inverse Reynolds number (the small parameter in the 
conventional Orr-Sommerfeld equation), vk/kl 2 d 3  for ‘q = O(Z), increases from O( E ’ K ~ )  

[vk(@”+ U”%)]” = ik [“ i (@”-k2@) - U”@] (’ = d/di) ,  
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in the outer domain, where I = 1 / k ,  to O( 1) in the shear-stress layer, where 1 = S/k  and 
S satisfies Sln(S/R) = O(K’). In that neighbourhood of the interface in which the 
relaxation time T is small compared with the transport time l/k@, the elastic 
component of J ’ ~  is negligible and (1.12) reduces to )rlC = 2v0, which corresponds to a 
mixing-length model (cf. Belcher & Hunt 1993 and van Duin & Janssen 1992). 
Conversely, in that outer domain in which T 9 l/kd$, (1.12) reduces to 
ilk = (2V*/&)(ik)-’, which corresponds to an elastic response of the flow or, 
equivalently, a rapid-distortion model; however, vlc is negligible in this domain, and 
( 1.13) then reduces to Rayleigh’s equation, corresponding to the quasi-laminar model. 

9 =-@pa, (1.14) 

the linear approximation to the complex amplitude of the streamline displacement, is 
singular there. This kinematic singularity reflects the presence of closed streamlines in 
the perturbed flow (Phillips 1977, §4.3), for the description of which the linearized 
formulation is inadequate (cf. Benney & Bergeron 1969). I resolve this difficulty in 
Appendix A by matching a local description of the closed streamlines to the outer 
description of $2. It appears from this matching that the external effects of the closed 
streamlines in (7 -‘qc 1 9 (qc)1’2 are captured by the singularity at T = T ~ .  

The determination of the energy-transfer parameter /3, defined as in (1.3 a),  requires 
the calculation of the complex amplitudes of the wave-induced pressure and shear 
stress at the surface. These may be calculated from the solution of (1.13), subject to the 
boundary conditions at 7 = 0 and co. Alternatively, /3 may be expressed as the 
quadratic functional 

@ ( q )  is regular at 7 = 7jc,  but 

,8 = (kaUJ2 Re { v , [ “ ~ 9 ” ~  + 2V%’F’’ + U”(F - P) $Z”’] + ik %‘(F’2 + k22’))) dT, 

(1.15) 

which provides a Galerkin approximation for suitable approximations to X and 3. I 
carry out the latter calculation in $4 using a trial function that comprises two 
exponential functions with disparate outer and inner length scales similar to those 
introduced by Belcher & Hunt ((1.8) above). I obtain estimates of these length scales 
in $0 5 and 6, respectively, from variational integrals for reduced forms of (1.13) in outer 
and inner domains. The reader who is more interested in the formulation of the 
problem and the results than in the technical details of the approximate solution could 
omit $0 4-6. 

The resulting approximation to p is plotted versus c/U,  in figure 1, as also are the 
corresponding approximations for a mixing-length model (for which T = 0 in (1.1 l)), 
the quasi-laminar model (Miles 1959 a), and the numerical integrations of Townsend 
(1972) and Gent & Taylor (1976). The viscoelastic approximation is remarkably close 
to the quasi-laminar approximation in both magnitude and shape (variation with c). 
The mixing-length approximation, although similar in shape, is larger than the 
viscoelastic approximation by almost a factor of two and, like the eddy-viscosity 
approximation of M93, also is larger than the quasi-laminar approximation. 
Townsend’s /3 is of comparable magnitude, but with a somewhat narrower peak at a 
significantly larger value of c. The present approximation yields a limiting value of /3 
for c / U ,  j. 0 with kzo fixed in reasonable agreement with the limit inferred from 
observation, but roughly three times Townsend’s (extrapolated) limit. 

The differences between the present results and those of Townsend, especially for 
small c/U1, are surprising, since both his model and the present model rest on a 
viscoelastic closure of the linearized, Reynolds-averaged Euler equations. The most 

lom 
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plausible reasons appear to be Townsend’s resolution of the basic and wave-induced 
flows in Cartesian, rather than wave-following, coordinates, and possible inaccuracies 
in his numerical integration and/or the present Galerkin approximation. Other 
differences between the two formulations, including Townsend’s assumption kz,, = 
constant rather than g z , J q  = constant and his provision for the lateral transport 
of turbulent energy, appear to be qualitatively insignificant. 

2. Equations of motion 

We pose the velocity field in the form 
2.1. Rejinolds-aaeraged equations 

[ U J  = [u, 21, w] = [ $z ,  0, - $,I + [ U : ( s , v ,  z ,  t ) ]  (i = 1,2,3) (2.1) 

in the Cartesian coordinates [xi] = { x , ~ ) ,  z ) ,  where $ is the stream function for the mean 
(= y-averaged) flow, the ui satisfy the continuity equation 

aiui = 0 (a i  = a/ax,), (2.2) 
repeated indices are summed over 1-3, and [uJ is a randomly fluctuating velocity. 

The Reynolds-averaged Euler equations are 

9 ( u i )  = -a i (p/p) --dj(u; uj),  3 e D/Dt = a,+ ( u j )  dj, (2.3a, b) 

where ( ) implies a y-average, ( u ; )  = 0, p is the pressure, p = pa is the density, and 
- (uiu;) is the Reynolds-stress tensor. (All ‘stresses’ in the present development are 
true stresses divided by p.) Following Townsend (1972), we rewrite the x- and z- 
components of ( 2 . 3 ~ )  in the form 

9 ( u )  = -7rr-xs+7z,  9 ( w )  = -7rz+7,, (2.4a, 6 )  
where 

-7r is the mean vertical stress, and 7 is the mean shear stress. Guided by scaling 
arguments and Townsend’s (1972) conclusion ‘that the calculated solutions are not 
significantly different if stresses other than [TI are ignored’, we neglect x, and 7, in 
(2.4a, b), which then reduce to 

9(.) = -7r,+7,, 9 ( w )  = -7r,. (2.6~1, b) 

7r = (p/p+w’2), x = (u’2-w”2), 7 = - (u‘w‘) ,  (2.5~-C) 

2.2. Waue-following coordinates 
We now introduce the coordinates g and ’1, the wave-following function h, and the 
perturbation stream function $ + @h through the transformation (cf. Benjamin 1959) 

(2 .74  b) 
and 

(2.8a, b) 

where 4? is the mean velocity of the basic flow in the reference frame of the wave. The 
linear approximations to the gradient operator, the operator 9 (2.3 b), the mean 
velocity, and the wave-induced perturbation o of the mean vorticity (relative to its 
value U’ at the elevation z - [, where 5 is the mean vertical displacement of a particle) 
then are given by 

(2.9 a-c) 

-x = t, d7 = ‘1 + h(5, ‘1), 

$ = * ( T I )  dv + Wv) h ( t ,  v )  + $(& ?/), W y / l  = W r / )  - c, 
0 

S, = c?< - h, a,/, S, = a,, - h,/ a4, 9 = (4? + U’h + $J a, - (’4?ht + $J a,,, 
( u )  = W’1) + v/(?/) + $4, (h?) = - $,, (2.10a, b)  
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and 

The elimination of 7~ between (2.6 a,  b) yields (without linearization) 

w = (u, - w,) - V ( z  - 5 )  w & + #,, + V’(y) 6. (2.11) 

%a = TZZ.  (2.12) 

The linear approximation = - q5c to the kinematic equation 53[ = (w) yields 

6 = -$/“2. (2.13) 

This approximation fails near 42 = 0 (unless q5c = 0), but (2.8 a)  provides a description 
of the closed streamlines and determines [ in this neighbourhood. (Appendix A). 

The choice of h remains open, subject to the wave-following condition h = h, on 
7 = 0 and the requirement that the influence of the wave, and hence h, must vanish as 
ky 7 00. These conditions are satisfied by 

h = h,(O exp ( - k ~ ) ,  (2.14) 

which yields a non-orthogonal counterpart of Benjamin’s (1 959) orthogonal 
coordinates (derived from a potential flow over z = h,). The condition h = h, at 7 = 0 
compensates for the large velocity gradient (U’ + Ul / zo )  near the interface but not for 
the large vorticity gradient (U“+ - UJz;) ,  for which purpose it proves expedient to 
invoke the additional boundary condition h, = kh, (whereas (2.14) implies h, = -kh,). 
Summing up, we require 

h = h,, h, = kh, (7 = 0) ,  h7-0 ( k y  f a), (2.15 a-c) 

the satisfaction of which ultimately leads to a generalization of (2.14) that incorporates 
separate outer and inner length scales; see (4.7). A natural choice that satisfies 
(2.15~-c) is h = [ (Miles 1967), which maps the streamlines of the mean flow on the 
lines of constant 7. However, this implicitly assumes that all streamlines originate in the 
basic flow, thereby excluding closed streamlines, and renders the governing equations 
singular at the critical layer (see 93). 

2.3. Monochromatic motion 
It follows from the assumptions of monochromatic mean motion and linearity 
that the wave-induced perturbations with respect to the basic flow a(7) admit the 
representation 

[h, 5, 4, w, n, 7 - 7,] = Re ( [X ,  3, @, Q, P, F] e’”}, (2.16) 

where 2 ... are complex amplitudes. Combining ( 2 4 ,  (2.10)-(2.12) and (2.16), we 
obtain the linear approximations 

9 = (J’@-a@‘+(ik)-lY‘, 9’ = -/&a@, (2.17a, b) 
and 

Continuity of the interfacial velocity (we neglect the wind-induced drift) and 
evanescence of the wave-induced disturbance as kq f 00 imply the boundary conditions 

@Q = d2(@’’- k2@)  - W@ = (ik)-lF’’ (’ d/d,q). (2.18) 

@ = O X ,  @ ‘ = a ( k c - U ’ )  (7=0) ;  @-0, Y+O (kyt00) .  ( 2 . 1 9 ~ 4 )  

Lamb’s (1932, 5349) solution for a surface wave in a viscous liquid with prescribed 
stresses at the surface may be adapted to the present problem through the limit 
s = p , / p ,  $ 0  (Appendix B) to obtain the interfacial impedance (defined as in M57) 

(2.20) a+iP = ( c 2 - c : , ) / s q  = (P ,+iFo) /kaq  = @,+iY,, 
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where c is the complex wave speed and c, (the imaginary part of which comprehends 
viscous dissipation in the water) is its value in the absence of the air. 

3. Viscoelastic closure 

coordinates 6, r is described by 
We proceed on the assumptions that: (i) the basic flow in the wave-following 

(3.la, b) 

where zo is the surface roughness and vo is the basic eddy viscosity; (ii) the evolution 
of the shear stress 7 in the perturbed boundary layer is governed by (Townsend 1976, 

(3 .2~)  
$7.13) 

where 
a1 = 7 0 / ( q 2 )  (3.2b) 

is an empirical constant, for which Townsend chooses 0.15-0.16 = K', q2 = u; u; is the 
turbulent intensity (a,  = K' implies ( q 2 )  = V",/K~ = u;"), L, is a dissipation length, p' 
and w' are the fluctuations in p and w, and Z represents the lateral transport of 
turbulent energy. 

Townsend (1972) models Z by the gradient-diffusion form 2 = ~ a ; l D ( t ~ o ~ z ) ,  and 
approximates D by 0.3 (also, in a few places, by the alternative value 0.1, with little 
change in his numerical results). This form is questionable (Bradshaw, Ferriss & Atwell 
1967); however, both Townsend's results and those of Bradshaw et al. support the 
neglect of Z in the present context. 

The crucial construct for the implementation of (3.2) is L,. Townsend (1972) argues 
that L, should be proportional to z -ha near the surface but 'more nearly proportional 
to height above the average position of the surface' for kz  = O( 1) and posits 

(3.3) 
We satisfy Townsend's premises (quoted above) in the wave-following coordinates 5 , ~  
through the somewhat simpler choice (cf. Prandtl's mixing length) 

1 -1 1 2  7jUl B7-7(Uz) + L,-'(7/a,) 3/2 = - i3,((pT/p) w' +2q w ) E 2, 

U:'~L, = K[Z  - ho(.v) eckr]. 

U:" L, = K(T  + Z,,). (3.4) 
Substituting (3.2b), (3.4) and Z =  0 into (3.2a), linearizing in 7-70 and the 
perturbation strain rate (u,) - U'(r), dividing the result by $U'(r), and introducing the 
relaxation time 

we obtain the viscoelastic constitutive equation (Miles 1996) 
T = l/a, U'(y), (3.5) 

T 5 8 7 + ~ - 7 ~  = 2voe, e (u , ) -U'(r)  z $7 ,+U"(r )h ,  (3.6~1, b) 

which differs essentially from Townsend's (1972) equation (2.12) only in the neglect of 
lateral transport and choice of L,. The complex amplitude of 7-70, as defined by 
(2.16), then is 

9 = v,(@"+ VP)  (3.74 
= -1~,"222?+2U'9'+ V(Y-P)] (3 = -@pa), (3.76) 

(3.8) 
where 

is a complex eddy viscosity. The limit T 4 0 yields a mixing-length model with 11,  = 2v0. 

11, = 2v0( 1 + ikT@)-I = 2V,[ U'(y) + @/a,) &(y)]-I 
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Substituting (3.7 a) into (2.18), we obtain the Orr-Sommerfeld-like equation 

[v,(@”+ U”#)]” = ikPZ(@”--kz@)- U”@] (3.9) 

or, alternatively, from (3.7b), 

{v,[G?Z?”’+2u’S’+ U”(%-#)]}” = ikPZ2S’)’--kZ4‘PS]. (3.10) 

Note that q = qc is an ordinary point for (3.9) and a removable singular point for (3.10) 
if A? is prescribed. But if Z = 3 (see last paragraph in $2.2) 71 = qc is a regular, non- 
removable singular point for both (3.9) and (3.10). 

4. Quadratic integral for a + $3 
We now express a+$ as a quadratic functional of S. Multiplying (3.10) by -9, 

integrating by parts over 0 < q < co along a path that passes under q = qc, and 
invoking 

which follow from ( 2 . 1 7 ~ )  and (2.19a, b), and null conditions for q+ co, we obtain 

S = a, 3’ = ka, F’ = ik(YO - kac2) (v = 0), (4.1 u-c) 

[ow 2TF”dq = ka(Fo - iP0) + i(kac)2 + 9°F dq Jam (4 .2~)  

= - ik 1; S[(@2S’)’ - k 2 W 9 ]  dq = i(kac)2 + ik @2(%’z + k22T2) dq. 

(4.2b, c) 

(4.3a) 

J: 
It then follows from (2.20) and (3.7b) that 

a + ip = (ka Cr;“)-’(Y, + iFo)  

= (kaUJ2 lorn {ivkp22”’2 + 2U’3’T’’+ U”(S - 2) S”] - k@2(2?’z + k 2 S 2 ) }  dq. 

(4.3b) 

The functional (4.3b) is not a variational integral for (3.10), which is not self-adjoint, 
but it does provide a viable Galerkin approximation on the assumption of a suitable 
trial function (or set of trial functions). 

Substituting vk from (3.8), neglecting kzO, introducing the dimensionless variables 

+ = kq, L(+)= @/u, z In (+//), D(+) = 1 + i(,+/al) L(+), .$(+I = # / a ,  
if(+) = s / u ,  (4.4~-e) 

in (4.3b), and then dropping the hats, we obtain 

a + i/3 = 2 i2  (I+ J+  K )  - M ,  
where 

(4.5) 

qL3””’ dq, = J” 2i”T”dq O0 (Z - S) S ” d q  
I =  D ’ .=lo qD , (4.6~-C) 

O D  

M = lom L 2 ( P  + z2) dq, (4.6d) 

and the primes now signify differentiation with respect to the dimensionless arguments. 
It follows from # = S = 1 at q = 0 that the integrand in (4 .6~)  is bounded for q+O. 
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0 1 2 3 4 5 6 7 8 

cl u, 
FIGURE 1. The energy-transfer parameter /I, as calculated from : the viscoelastic approximation, 
(4.5)-(4.9) for K = 0.4 and C = g z , , / q  = 2.3 x (-); the eddy-viscosity approximation, 
(4.5)-(4.8) and (4.10) with D = 1 (---); the quasi-laminar approximation (5.7b) ( .  . . .); Townsend’s 
(1972) numerical integration for R = In ( l / k z o )  = 8 (a); Gent & Taylor’s (1976) numerical 
integration for R = 8 ( X )  and ka = 0.01. The assumption of constant g z o / q  is expected to fail for 
small c/U,,  and the assumption e 4 1 fails for c / U ,  2 6. 

A suitable trial function, which satisfies the dimensionless counterparts of (4.1 a, b), 
the corresponding conditions for X ,  and the null conditions at ‘v = m, is 

where h = O( 1) and I 6 I G 1 (8 may be complex) are outer and inner scaling parameters 
(see below). The resulting I and J are analytically intractable (but see Appendix C) 
except in the limit D --f 1 ; however, their numerical evaluation, along with that of M ,  
is straightforward. K = 0 by virtue of H = 9. 

Plausible estimates of A and 6 are provided by variational formulations of the quasi- 
laminar (§ 5 )  and shear-stress-layer (§ 6) problems, which yield 

1-€ 
1 + €  

h = ~ + O(e3) 

and 
i6L,/K2 = v’3 - 1 + O( 6), L, = Lo + In 6, Lo = I / €  = - y - In 26. (4.9 a-c) 

The numerical solution of ( 4 . 9 ~ )  for K = 0.4 and C = 2.3 x lop3 yields S,/e z 0.18 and 
6Je = -0.23 for 0.5 < c / U ,  < 5. 

The end result for /3, obtained by combining (4.5)-(4.9), (1.6) and (1.7) with K = 0.4, 
a, = K’ = 0.16, and C = gz , /V  - 2.3 x is plotted in figure 1. Also plotted are: 
the corresponding approximation for a mixing-length model, for which vk = 2v0, 
D = 1, (4 .9~)  is replaced by (see $6) 

i6L8/K2 = 1 + O(8), (4.10) 

1. - 
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and the integrals in (4.6) admit analytical evaluation (Appendix C )  ; the quasi-laminar 
approximation p, (5.7); Townsend’s (1972) results for R = -Ink-, = 8;  Gent & 
Taylor’s (1976) results for ka = 0.01 and R = 8. 

5. Quasi-laminar approximation 

quasi-laminar domain by 

and 

We now return to dimensional variables and approximate (2.17a, b) and (3.10) in the 

(5.1 a, b) 9 = u @  - d$@‘ = ~ $ 2 9 ‘  9’ = - k2&@ = k24p‘y 

( ~ 2 ~ s ‘ ) ‘  - k 2 q 2 y  = 0. (5.2) 

Multiplying (5.2) by Y, integrating by parts over 0 < q < 00, and invoking the inner 
limits Y --f a and W9’+Yo and a null condition at 9 = co, we obtain (cf. Miles 1959b) 

which is stationary with respect to first-order variations of 9” about the true solution 

Perhaps the simplest admissible trial function for the variational integral (5.3) is (cf. 
of (5.2). 

(4.7)) 
(5.4) 9 = ae-b’l/A, 

where h is a free parameter. Combining (5.4) and J$ z Ulln(y/yc) in (5.3) yields 

&o = P,,/kaq = - k ( X 2 +  1)  e-2k”A1n2(~/rl,)dq = -i(h+h-1)(Li+&2), (5.5) 

where LA = L,+Inh (as in 34), and Lo is defined as in (1.6), but with zo neglected. It 
then follows from the variational condition c?@,,/Sh = 0 that 

6: 

(5.6) 

the expansion of which in powers of e = 1/L, yields (4.8). 
The corresponding quasi-laminar approximation to the energy-transfer parameter 

may be calculated from (5.1 a), which implies 0, = a,/ Ui z Po/ Ui, and (1.3 b), which 
yields 

p, = nA-l I @,/ u, a l 2  = 7rA I 4, l 2  = $rA(h + h-1)yL; + i n 2 ) 2  ( 5 . 7 ~ )  

= n ~ ~ ; [ i  -(4-;n2)c2+o(c3)1. (5.7b) 

6. Shear-stress layer 

combine the results to obtain the shear-stress-layer approximation 
We now assume kq < 1, neglect k2W2’,  choose H = 3 in (3.7b) and (3.9), and 

F”-(ik@/vk)Y = 0 (kq < 1, H = 3). (6.1) 

Multiplying (6.1) by F and integrating by parts over 0 < q < 00 yields (cf. (5.3)) 
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which is stationary with respect to first-order variations of F about the true solution 
of (6.1). 

Proceeding as in $5, we substitute the trial function 

(6.3) = yp0 e-k~18 

and vk: (3.8), with a, = K' therein, into (6.2) and invoke a(F;/F,)/a& = 0 to obtain 

Y = - Fh/ikF,, = +K-'[( 1 + 6,)(L,2 + fd') + 26;l- P'], (6.4) 

(L,2 +inz + 2LJ 62, + 2L,6, - 2 = 0, L, = Lo +In S, 8, = i6/K2, (6.5~-c) 

where Lo = l /e is defined by (1.6), and 2 = c/U,. Solving ( 6 . 5 ~ )  as a quadratic in 6, L, 
and letting 8, 0, we obtain (4 .9~) .  The numerical solution of (6.5) for K = 0.4 and 
C = 2.3 x lop3 yields ar/c  = 0.13 and 6Je = -0.20 for 0.5 < t < 5, which compare 
with 0.18 and -0.23 for (4.9). The corresponding approximations to the real and 
imaginary parts of Y are within 1 % and 10 %, respectively, of those obtained through 
numerical integration of (6.1) for 0.5 < P < 5. 

Repeating the derivation of (6.4) and (6.5) with vk = 211, (the mixing-length model, 
for which relaxation is neglected), and letting 6,+ 0, we obtain (4.10). 

7. The limit P 4 0 
We replace Charnock's relation g z , / q  = C by Townsend's (1972) 

kz, = gz,/c2 = constant 5 ePR (7.1) 

in the limit 2 j 0. This implies the replacement of (1.6) and ( 1 . 7 ~ )  by 

Lo = 1/e = R-P- 1.27, R = ec'-R. (7.2a, b) 

The corresponding, limiting values of /I given by (C 8 b) and (C lob), respectively, are 

and 
/3+0.88R-11.88+O(e) ( t j . 0 )  

/3+ 1.24R - 1.54 + O(S) ( T = 0, P 1 0), 

which yield p = 5.16 and 8.37 for R = 8. Townsend's (1972) extrapolated limits of /3 for 
R = 8, 10 and 12 (R = 10 and 12 appear to be reversed in the caption to his figure 1) 
are 1.8, 1.4 and 1.2, which, in contrast to (7.3) and (7.4), are decreasing in R. 

The corresponding limit implied by Belcher & Hunt's (1993) result, (1.8) above, is 

R+InA 
R + l n l '  

p40.32(2V4+ P - l ) ,  V =  ____ (7.5a, b) 

where R = kh, and f = kl are determined by 

R2(R + In d )  = 1, [(R + In r )  = 0.32. (7.5G 4 
Letting R = 8, we obtain A = 0.38, f = 0.061, V = 1.32 and p = 2.38. 

The corresponding values of p,, and be, are, from (1.5), (5.7) and (7.2), 2.15 and 2.16. 
The asymptotic value of /3 inferred from (1.3a), using Plant's (1982) data for the 

dimensionless growth rate CT, is p = 5.0. This is close to the 5.16 given by (7.3) for 
R = 8, but the uncertainty in R is too large to infer agreement to better than a factor 
of two. 
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8. Conclusion 
We conclude that the difference in the wind-to-wave energy transfer predicted by the 

quasi-laminar and viscoelastic models is small over a wide range of c /U ,  for a 
logarithmic mean-wind profile with the roughness length zo determined by Charnock's 
similarity relation ( g z , / q  = constant). The difference between the predictions of the 
quasi-laminar and eddy-viscosity models is rather larger, and in the opposite direction, 
but still within a factor of two. To the extent that these results are used to guide the 
construction of ad hoc approximations to the energy-transfer parameter /3 (Komen et 
al. 1994), their immediate practical value may lie primarily in providing confidence that 
the predictions of the theoretical models are relatively insensitive to significant changes 
in the closure hypotheses for these models. In addition, and perhaps surprisingly, they 
demonstrate that the established effectiveness of Townsend's boundary-layer-evolution 
equation in dealing with turbulent flow over fixed boundaries carries over to flow over 
progressive water waves. 

The numerical calculations were performed by Scot Fagerland. This work was 
supported in part by the Division of Ocean Sciences of the National Science 
Foundation, NSF Grant OCE95-01508 and by the Office of Naval Research Grant 
NOOO14-92-5- 1 17 1. 

Appendix A. Closed streamlines 

stream function $b for the basic flow has the minimum (for Ui > 0) 
Closed streamlines occur in the neighbourhood of q = rIe, where %(TI) = 0 and the 

$b = 1 @(q)  dq + $, +fUi(s - q J 2  --)- I / , ) ,  = 4Y(q) dq (A 1 a ,  b) 

($, z - Uc$ for 42 = U,log(~/qc)). The stream function for the perturbed flow, 
(2.8a), admits the corresponding expansion (cf. Lighthill 1962 and Phillips 1977, 54.3) 

(A 2) 

wherein the subscript c implies q = qcx, and an error factor of 1 +O(ka)  is implicit. 
Introducing 

c 
$ = $, + fui(q- ycI2 + U ~ O I  - q r )  + $ c ( t ) ,  

$, = Re{@,e"t} = -&d2ULcosk(&x,), $, = $ , - & d 2 U ~ ,  I,+] = $,+&d'U~,  
(A3 a-c) 

(A 4) 

(q--~e+h,)2++zsin2[~k(t- .~, ) l  = h,2+(2/U:,)($-$,,) ($, d $ d $,I. (A 5 )  

Equation (A 5 )  describes a periodic sequence of nested sets of closed streamlines (on 
which z = 7/+h z q+h,, so that the displacement of a particle from its ambient 
position z = 7, is { = 7 - 7je +h,) with the family parameter $. If h,2 < d', as is typically 
true and we assume for algebraic simplicity : the centres are at k( 5 - -yo) = 0 mod 2n: and 
9 = qc, where $ = yk0; the separatrix, outside of which the streamlines are sinuous, is 
at $ = and the maximum thickness of the separatrix is 2,d. We infer from the 
development of 542-5 that d = O[(ka)1i2qc/G]. These closed streamlines bifurcate from 
the minimum of $,,, and the entire set may be regarded as descending from the basic 

where 

is determined by the outer solution, we transform (A 2) to 

@ c - 4  = 1,d2[1: el(n-kXo) 
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streamline z = 7 = ’Ic ,  while the sinuous streamlines above/below the separatrix may 
be regarded as descending from the basic streamlines z = r1 2 ?jC (but note that $ > 
on all sinuous streamlines). 

Appendix B. The interfacial impedance 

water bounded above by the surface wave 
The solution of the linearized Navier-Stokes equations in the semi-infinite body of 

(B 1) 

in a fixed reference frame yields (Lamb 1932, 5349 after letting A = iac(1 +%), 
C = ac%, n = -ikc, and neglecting surface tension therein; following Lamb, but 
contrasting with the notation in $4 1-6 above, we now work with complex dependent 
variables) 

(B 2a,  b )  
and 

- - a eih-(x-ct) = 
- ho e -  

u,, = [k+‘X(k-m)]ch,, 7,, = (713)w, = (2v,,kc+i%c2)kho, 

(B 2c) 

for the tangential velocity, tangential stress, and normal stress, respectively, at the 
surface. The subscript u’ refers to the water, and m E [k2-i(kc/~r,,)]112. 

Invoking continuity of the perturbation velocity u = ch, and 7 and -n, the 
tangential and normal stresses, eliminating %, and letting k v J c  4 0, we obtain the 
interfacial conditions 

(B 3 a, b)  

(B 4) 

is the complex wave speed in the absence of the air and comprehends (through its 
imaginary part, which may be replaced by an empirical equivalent) the dissipation in 
the water. The ratio of the second term to the first term on the left-hand side of (B 3a) 
is typically smaller than lo-’; accordingly, (B 3a) may be approximated by u = kch,, 
as anticipated in (2.19b). But note that (B 3a) does not reduce to c = kch, in the limit 
of an inviscid liquid (kv,,/c + 0). 

Finally, we replace n and 7 by their complex amplitudes 9’ and F (2.15) to obtain 
the interfacial impedance (defined as in M57) in the form 

u - i(kcvJ1”s7 = kch,, s(n + i7) = (2 - ci,) kh, (s E p,/p,,), 
where 

c,, = (g/k)”’ - 2ikv,, (I kvw/c I 4 1) 

Appendix C. Approximate evaluation of I and J 
The integrals I and J (4.6a, b )  are analytically intractable except in the limit D + 1, 

but reference to a table of Laplace transforms of logarithmic functions suggests that 
we approximate them by separating out the limits for D- 1 and then letting 
L(7) = L(&) in that component of the remainder that is dominated by exp( - 2 r / / a ) ,  
where a is (for the moment) a free parameter; e.g. (7 now is dimensionless, as in 54), 



144 J .  Miles 

and 

where 

and 
€a = 6(2al/iaL,), La = -y--ln(2k/n) = L,+lna,  (C 3 )  

(Note that D - 1 corresponds to 6 - 1 -2-l.) The end results of these approximations, 
together with the exact evaluation of M (4.6d), are 

4AB 
h+S 

J = -(A2&*+ B2€8-2AB€g), 
and 

M = ; A ~ A ( I  + A ~ ) ( L ; + & ~ ) + $ B ~ ~ I  + s ~ ) ( L ; + Q ~ ~ ) - A B $ ( I  +sA) (L , z++~~) ,  ( c  5e) 

A =(l+S) / (h-S) ,  B = ( l + h ) / ( h - & ) = A + l ,  (C 6a,  b) 

(C 7 )  

Combining (C 1)-(C 5 )  in (4.5) invoking (4.8) and (4.9), and expanding in s, we 

where 

and 
$ = 26h/(h + 8). 

obtain 

/3 = 2 4  1 + ( 4 3  + 1 )( 1 -g8) LI - ( d 3  - l)(LI + 4 In 2) - 4(€&-- &28)] - 46, L,2 + O(e) 
(C 8 4  

= 0.88L0-0.76+ O(t.). (C 8b)  

The contribution of J to (C 8b) is -0.14. 

model) and the trial function (4.7) to obtain 
The integrals I, J and M (4.6) may be evaluated exactly for D = 1 (the mixing-length 

a+$=  2ik-2[-1+~A2(L,+1)+~B2(L~+1)-2ABSh(h+S)-2(Lg+1)] 

- [$I( 1 + A') A2(Li  + in2) + $6( 1 + S2) B2(Li + $7') 
- AS$( 1 + Gh)(L,Z + i7r2)]. (C 9) 

Letting 6-0 and invoking (4.10), the numerical solution of which yields 6Js z 0.22 
and S i / e  = -0.29 for 0.5 < ĉ  < 5 and C = 2.3 x 

/3= ( ~ / h ) ~ [ $ ~ ~ , + 1 ) - ( 1 - h ~ ) ~ ~ ~ ~ - 4 ( 1 + h ) I n 2 + ~ ( 1 - ~ ) ( 1 + 3 h ) ]  

we obtain 

- (6,/h"(l + A)( 1 + h2)Li + O(S) (C 10a) 

(C lob) = 1.24L0 + 0.03 + O(e). 

The contribution of J to (C lob)  is -0.32. 
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